
A SMOOTH APPROXIMATION ON THE EDGE OF CHAOS

P. J. POTTS

Department of Computing, Imperial College, London SW7 2BZ.

It is known that for almost all starting points the non-deterministic dynamical
system corresponding to a hyperbolic iterated function system with probabilities
generates orbits whose frequency of visits to any given Borel subset of the domain
is described by the unique invariant measure of the iterated function system with
probabilities. In this paper, we will show that under certain conditions this chaotic
probability measure can be approximated by a smooth probability density. We
apply this result to forgetful neural networks.

1 Introduction

The study of iterated function systems has been an active area of research since
the seminal work of Mandelbrot 11 on fractals and self-similarity in nature.

1.1 Iterated Function System

An iterated function system (IFS) fX; f1; f2; : : : ; fNg on a topological space
X is given by a �nite set of continuous maps fi : X ! X (i = 1; 2; : : : ; N ). If
X is a complete metric space 15 and the maps fi are all contracting, then the
IFS is said to be hyperbolic.

A hyperbolic IFS induces a contracting map 10 on the complete metric
space HX of all non-empty compact subsets of X with a unique �xed point
called the attractor of the IFS.

For graphical applications, X is usually the plane R2, fi are contracting
a�ne transformations and the attractor is a fractal.

1.2 IFS with Probabilities

A hyperbolic IFS with probabilities fX; f1; f2; : : : ; fN ; p1; p2; : : : ; pNg is a hy-
perbolic IFS fX; f1; f2; : : : ; fNg, with X a compact metric space, such that
each fi (i = 1; 2; : : :; N ) is assigned a probability pi with 0 < pi < 1 andPN

i=1 pi = 1.
A hyperbolic IFS with probabilities induces a contracting map3 on the set

of normalized Borel measures MX on X with a unique �xed point described
as a multifractal whose support is the attractor of fX; f1; f2; : : : ; fNg.

In the extreme case where all the maps fi (i = 1; 2; : : : ; N ) are the same,
the unique invariant measure has the Dirac delta function 5 as its density and
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its support is a single point corresponding to the unique �xed point of the map.
In this paper, we show that for a certain class of hyperbolic IFS with

probabilities, close to the extreme case, the unique invariant measure can be
approximated by a smooth probability density.

1.3 Non-Deterministic Dynamical System

Given a hyperbolic IFS with probabilities fX; f1; f2; : : : ; fN ; p1; p2; : : : ; pNg the
corresponding non-deterministic dynamical system is the iterative orbit of a
single point in X, in which at each iteration a map fi is selected with proba-
bility pi.

In 1986, Elton 7 made the important observation that the frequency of
visits to any given Borel subset of X is described by the unique invariant
measure of fX; f1; f2; : : : ; fN ; p1; p2; : : : ; pNg.

Using this observation, we are able to demonstrate computationally, by
considering ordits of length 109, that the unique invariant measure gets closer
to the formulated smooth probability density.

We then proceed to formulate the average Lyapunov exponent for the non-
deterministic dynamical system and apply it to the problem of evaluating the
storage capacity of forgetful neural networks using the smooth learning scheme.

2 The Approximate Probability Density

Consider the non-deterministic dynamical system with small � corresponding to
the hyperbolic iterated function system with probabilities

�
[x�; x+];�+; ��;

1
2 ;

1
2

	
where ��(x; �) = �(x � �), � : R! R, � is smooth, odd, monotonically in-
creasing, strictly concave for x > 0, �0(0) = 1, � > 0 and x� is the �xed point
of ��. This prescription determines the function � as having the form

�(x) = x� axr + O(xr+2); (1)

where r � 3 is an odd number and a > 0.
In general, the order notation f(x) = O(g(x)) means that for all � > 0,

there exists a C > 0 such that jxj < � implies jf(x)j < C jg(x)j.
Strictly speaking, the above IFS needs to be folded once to make it hyper-

bolic. In other words, we ought to consider�
[x�; x+];�+ � �+; �+ � ��; �� � �+; �� � ��; 1

4
;
1

4
;
1

4
;
1

4

�

because there exists c(�) < 1 such that d
dx
�� � ��(x) � c for all �; � 2 f+;�g,

x 2 [x�; x+] and � > 0.
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Figure 1: Plot of y = �+(x), y = �
�

(x) and y = x from x = x
�

to x = x+ where
�(x) = tanh(x) and � = 1

2

The unique invariant measure � of the above IFS with probabilities is a
�xed point of the Frobenius-Peron equation,

F :MX ! MX

F (�) =
1

2
� � ��1+ +

1

2
� � ��1� : (2)

In other words,

�(B) =
1

2
�
�
��1+ (B)

�
+

1

2
�
�
��1� (B)

�
for all Borel sets B � [x�; x+].

It is known that the shape of the invariant measure when represented by its
value over certain narrow partitions of [x�; x+] becomes gradually smoother 4

as � ! 0. However, it also becomes narrower. In fact, it tends to the Dirac
delta function 5.

Let us change variables according to the prescription

y =

 
a

1
r+1

�
2

r+1

!
x and h = a

1
r+1 �

r�1
r+1 . (3)

This leads to a new IFS with probabilities f[y�; y+]; +;  �; 12 ; 12g where
 �(y;h) =  (y � h), y� is the �xed point of  �,

 : R ! R

 (y;h) = y � yrh2 +O(hs)

and s = 2
�
r+1
r�1

�
> 2.
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It can be shown that for small �, x� � � r

p
�
a
and therefore that for small

h, y� � � r

q
1
h
, which tends to �1 as h! 0.

Another view of the invariant measure is the following. Imagine that we
begin with an in�nite number of starting points distributed according to a
smooth probability density p0(x). The relation evolving the probability density
forward in time is

pn+1(y) =

Z y+

y
�

�
1

2
�(y �  +(z)) +

1

2
�(y �  �(z))

�
pn(z)dz

where �(y) is the Dirac delta function 5. The unique invariant probability
density p(y) is the �xed point of the above iterative prescription.

Using the identityZ 1

�1

f(z)�(y � g(z))dz =
f(g�1(y))

g0(g�1(y))

we have

2p(y) =
p( �1+ (y))

 0+( 
�1
+ (y))

+
p( �1� (y))

 0�( 
�1
� (y))

(4)

assuming that we can ignore that part of the integral where y > y+ and y < y�,
which we certainly can do if �(x) is bounded.

Furthermore, it can be shown that

 �(y;h) = y � h� yrh2 +O(hq)

 0�(y;h) = 1� ryr�1h2 + O(hq)

 �1� (y;h) = y � h+ yrh2 +O(hs)

where q = minf3; sg and the di�erentiation and inversion are with respect to
y.

Finally, by considering Taylor's expansion for the main parts on the right
hand side of Eq. 4

p( �1� (y)) = p(y) + (�h + yrh2)p0(y) +
h2

2
p00(y) + O(hs)

 0�( 
�1
� (y)) = 1� ryr�1h2 + O(hq)

and dividing through by h2, we arrive at

p00(y) + 2yrp0(y) + 2ryr�1p(y) = O(h�) (5)

4



where � = 4
r � 1 > 0.

Remarkably, this linear, second-order, di�erential equation has the exact
solution

p(y) = K exp

�
� 2

r + 1
yr+1

�
(6)

as h ! 0 where K is an arbitrary constant. This solution goes to zero ex-
ponentially fast as y ! �1, perhaps justifying the earlier assumption about
ignoring the far reaches of the integral range in the unbounded �(x) case.

In order to satisfy the normalizing constraint for a probability density, we
have to set

K =

�
r+1
2

� r

r+1

�
�

1
r+1

� (7)

where �(x) is the gamma function 5, which can be de�ned by

�(x) =

Z 1

0
tx�1 exp(�t) dt.

3 The Experimental Evidence

We backed up our careful mathematical analysis with computer simulations
for a few cases of r and �.

We considered r = 3 and r = 5. For each case, we started with � = 1
2 and

then halve it at each step until we reached � = 1
32 . For each step, we plotted the

chaotic probability measure in black and the corresponding smooth probability
density given by Eq. 6 in grey. The convergence of the two as � decreases is
striking.

The chaotic probability measure has been represented by partitioning the
interval where the theoretical density is greater than one thousandth its value
at zero into 500 equal sub-intervals and considering the frequency with which
the orbit of the point starting at the origin visits each sub-interval over an
excessive sequence of 109 iterations of the non-deterministic dynamical system.

Fig. 2 shows some of the plots for �(x) = tanh(x) = x � 1
3x

3 + O(x5)

and Fig. 3 shows some of the plots for �(x) = x� x5 with the horizontal axis
representing x. Observe that the black lines are bounded exactly by x� and
x+ as expected, while the grey lines are clearly not.
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Figure 2: Plots of experimental measure (black) and theoretical density (grey) generated by
IFS with �(x) = tanh(x) and � = 1
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Figure 3: Plots of experimental measure (black) and theoretical density (grey) generated by
IFS with �(x) = x� x5 and � = 1
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4 Analytical Expression for the Integral of any Smooth Function

Consider the integral Z
[x
�

;x+]

g(x) d�(x) (8)

where g(x) is smooth and there exists n even such that the nth derivative
of g(x) is its �rst non-zero derivative at the origin. There is no constructive
technique for computing this integral 17 in general.

In the speci�c case, where � is the unique invariant measure of a hyperbolic
IFS with probabilities, a constructive technique, called generalized Riemann

integration, by Edalat 6 can be used to compute the integral.
However, for the extreme case that we are considering in this paper the

technique becomes impractical. In any case, it gives a numerical rather than
an analytical answer.

Using the change of variable given in Eq. 3, we get

Z
[x
�

;x+]

g(x) d�(x) �
Z 1

�1

p(y)g

  
�

2
r+1

a
1

r+1

!
y

!
dy

� g(n)(0)

n!

�
�
n+1
r+1

�
�
�

1
r+1

� �r + 1

2a
�2
� n

r+1

. (9)

5 Analytical Expression for the Average Lyapunov Exponent

Consider two orbits, one starting at x and another starting at x + �x where
�x is small. The exponential rate at which these two orbits repel each other is
known as the Lyapunov exponent 
r at x. However, for the case in question, we
have exponential attraction, therefore we would expect a negative Lyapunov
exponent. In other words,

j�in � � � � � �i2 � �i1(x+ �x)� �in � � � � � �i2 � �i1(x)j � �x exp(
rn).

where i1; i2; : : : ; in 2 f+;�g, n is large and �x is small.
It follows that


r = lim
n!1

1

n+ 1

nX
m=0

g(�im � � � � � �i2 � �i1(x)) (10)

where g(x) = ln�0+(x) and �(x) is odd.
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The average Lyapunov exponent of a physical system quanti�es its chaotic
behavior. It has been found to be an extremely useful quantity to predict the
macroscopic properties of many complex systems.

Elton's Ergodic Theorem 7 states:

For a non-deterministic dynamical system corresponding to an IFS
with probabilities fX; f1; : : : ; fN ; p1; : : : ; pNg, where X is a com-
pact metric space, the corresponding time average of a continuous
function g for almost all initial points x 2 X and for almost all
sequences i1; i2; : : : 2 f1; : : : ; Ng tends with probability one to its
integral with respect to the unique invariant measure of the IFS

lim
n!1

1

n + 1

nX
m=0

g(fim � � � � � fi2 � fi1(x)) =
Z
g d� (11)

provided that there exists r < 1 such that

NY
i=1

d(fi(x); fi(y))
pi � rd(x; y) (12)

for all x; y 2 X where d is the metric on X.

The condition for Elton's Ergodic Theorem is met in our case because ��
are contracting maps and therefore the average Lyapunov exponent is given
by


r =

Z
g(x) d�(x): (13)

For small x, we have g(x) � �arxr�1, and so, using Eq. 9, we have


r � �ra 2
r+1

�
�

r
r+1

�
�
�

1
r+1

� �r + 1

2
�2
� r�1

r+1

. (14)

In particular, for �(x) = tanh(x), we have 
3 = �0:827901� and for �(x) =

x� x5, we have 
5 = �2:10909� 43 .

6 An Application to Forgetful Neural Networks

Neural networks 8 are the study of idealized systems containing very large
numbers of connected neurons deliberately constructed to make use of organi-
zational principles found in the human brain.
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Forgetting in neural networks has a useful stabilizing role. Using the results
above, we will derive an analytical expression for the optimal rate of forget-
ting. Optimal in the sense of maximizing its storage capacity for memorizing
patterns.

Firstly, we need to consider the Hop�eld model 9 with N fully connected
neurons. Each neuron is a processing unit with one output xi 2 f�1; 1g.

The symmetric synaptic coupling parameter Jij characterizes the connec-
tion from neuron j to neuron i.

Each neuron updates its output asynchronously according to

xi becomes

�
1 if

PN

j=1 Jijxj > 0

�1 otherwise
.

If we de�ne the energy of the model as

H = �1

2

NX
i;j=1

Jijxixj

it can be shown that it decreases monotonically to the local minimum.
We want to store binary patterns in the neural network. The obvious ap-

proach is to make the the required stored patterns correspond to local minima.
This way when the neural network is set in motion close a local minimum, it
should make it way down the energy mountain to this local minimum and
hence act out a form of pattern recognition.

So, we require Jij such that there are local minima corresponding to the
required stored patterns. Given M patterns fXm j 1 � m �Mg, the simplest
storage prescription is

Jij =
1

N

MX
m=1

Xm
i X

m
j .

Unfortunately, this prescription leads to catastrophic forgetting 1;2 forM >

0:14N .
Hop�eld suggested alternative learning schemes in his original paper9 that

avoided this catastrophic forgetting. In these learning schemes, new patterns
are learned at the expense of gradually forgetting previously stored patterns.
These models are called forgetful neural networks. However, there is a price
to pay for this more desirable behavior. Namely, the storage capacity is lower
than that for the Hop�eld model.

The forgetful storage prescription is given by the local iterative procedure

Jmij =
1

N
�(NJm�1ij + �Xm

i X
m
j ) (15)
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where J0ij = 0 and Jij = JMij .
Let us consider the synaptic couplings. If we set xm = NJmij and hm =

Xm
i X

m
j

4 then Eq. 15 reduces to

xm+1 = �(xm + �hm)

where x0 = 0.
Assuming that the stored patterns are random, this means that hm is a

random variable, which is equal to 1 or �1 with equal probability. There-
fore, in the limit as M ! 1, this is a non-deterministic dynamical system
corresponding to the IFS 10 with probabilities f[x�; x+];�+; ��; 12 ; 12g where
��(x) = �(x� �) and x� is the �xed point of ��.

The nature of � determines the properties of the neural network.
In 1986, Nadal et al. 13 explored various learning schemes for forgetful

neural networks including the marginalist scheme and the smooth scheme.
The marginalist learning scheme speci�es that the contribution of each

pattern to the synaptic couplings decays exponentially with age.

�(x) = �

�
1

N

�
x where �(z) = � exp

�
�1

2
z�2
�
. (16)

In 1986, M�ezard et al. 12 formulated and solved a general learning scheme
that incorporated both the Hop�eld model and the marginalist learning scheme
in the thermodynamic limit as N ! 1. It was shown that the maximum
storage capacity is attained with �opt = 4:10812 to 6 signi�cant �gures.

The smooth learning scheme speci�es a general iterative procedure for the
synaptic couplings using a restricted class of functions � : R! R such that
� is odd, monotonically increasing, strictly concave for x > 0 and �0(0) = 1.
Notice that this prescription determines the function � as having the form in
Eq. 1.

The embedding strength of a stored pattern is a measure of how well repre-
sented it is in the synaptic couplings. Given M patterns fXm j 1 � m �Mg,
the embedding strength em of pattern Xm is de�ned by

em =
1

N

NX
i;j=1

JijX
m
i X

m
j . (17)

We know that the embedding strengths of all stored patterns decay to
zero as further patterns are subsequently stored by virtue of the properties of
a forgetful neural network. Also, it would seem reasonable that this decay is
exponential on average when large numbers of patterns have been previously
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stored because all patterns are homogeneous in character. This leads e�ectively
to investigating the Lyapunov stability of the neural network, where the decay
rate corresponds to the Lyapunov exponent 16;4.

Therefore, in the limiting case as n !1, we have the following approxi-
mation up to scaling

em � exp(
rn) (18)

where n = M + 1�m and 
r is the average Lyapunov exponent.
It can be shown 14 that for the marginalist learning scheme

em � �
� n
N

�
.

Comparing this with Eq. 18 up to scaling, we deduce that the optimal
value of � for a forgetful neural network with large N is

�opt =
�2opt

2N
p
6

�
�
1
4

�
�
�
3
4

� � 10:19

N
(19)

for the canonical case where �(x) = tanh(x). Remember, it is not the actual
values of the embedding strengths that count, but rather their values relative
to each other.

Note that the optimal � is only inversely proportional to N in the cases
where r = 3. This is in contrast to that proposed in previous literature 16;4.

For the general case

�opt � N
�

(r+1)
2(r�1) (20)

7 Conclusion

We have derived a smooth analytical expression Eq. 9 to approximate the in-
tegral of any smooth function over multifractal measures generated by iterated
function systems with probabilities on the edge of chaos.

We have backed this up with experimental evidence and also applied it to
the problem of calculating the storage capacity of forgetful neural networks.

There ought to be applications for this technique in statistical physics, and
in particular to the Ising model.
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